Traveling the Silk Road: A measurement analysis of a large anonymous online marketplace

Authors: Nicolas Christin

26 pages, 13 figures, 4 tables; changes to v1 include revised sales volume and commission estimates (Sec. 5) and slightly expanded discussion

Abstract: We perform a comprehensive measurement analysis of Silk Road, an anonymous, international online marketplace that operates as a Tor hidden service and uses Bitcoin as its exchange currency. We gather and analyze data over eight months between the end of 2011 and 2012, including daily crawls of the marketplace for nearly six months in 2012. We obtain a detailed picture of the type of goods being sold on Silk Road, and of the revenues made both by sellers and Silk Road operators. Through examining over 24,400 separate items sold on the site, we show that Silk Road is overwhelmingly used as a market for controlled substances and narcotics, and that most items sold are available for less than three weeks. The majority of sellers disappears within roughly three months of their arrival, but a core of 112 sellers has been present throughout our measurement interval. We evaluate the total revenue made by all sellers, from public listings, to slightly over USD 1.2 million per month; this corresponds to about USD 92,000 per month in commissions for the Silk Road operators. We further show that the marketplace has been operating steadily, with daily sales and number of sellers overall increasing over our measurement interval. We discuss economic and policy implications of our analysis and results, including ethical considerations for future research in this area.

Submitted to arXiv on 31 Jul. 2012

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.