Sheaves, Cosheaves and Applications
Authors: Justin Curry
Abstract: This thesis develops the theory of sheaves and cosheaves with an eye towards applications in science and engineering. To provide a theory that is computable, we focus on a combinatorial version of sheaves and cosheaves called cellular sheaves and cosheaves, which are finite families of vector spaces and maps parametrized by a cell complex. We develop cellular (co)sheaves as a new tool for topological data analysis, network coding and sensor networks. A foundation for multi-dimensional level-set persistent homology is laid via constructible cosheaves, which are equivalent to representations of MacPherson's entrance path category. By proving a van Kampen theorem, we give a direct proof of this equivalence. A cosheaf version of the i'th derived pushforward of the constant sheaf along a definable map is constructed directly as a representation of this category. We go on to clarify the relationship of cellular sheaves to cosheaves by providing a formula that defines a derived equivalence, which in turn recovers Verdier duality. Compactly-supported sheaf cohomology is expressed as the coend with the image of the constant sheaf through this equivalence. The equivalence is further used to establish relations between sheaf cohomology and a herein newly introduced theory of cellular sheaf homology. Inspired to provide fast algorithms for persistence, we prove that the derived category of cellular sheaves over a 1D cell complex is equivalent to a category of graded sheaves. Finally, we introduce the interleaving distance as an extended pseudo-metric on the category of sheaves. We prove that global sections partition the space of sheaves into connected components. We conclude with an investigation into the geometry of the space of constructible sheaves over the real line, which we relate to the bottleneck distance in persistence.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.