Decay of Correlations for the Hardcore Model on the $d$-regular Random Graph
Authors: Nayantara Bhatnagar, Allan Sly, Prasad Tetali
Abstract: A key insight from statistical physics about spin systems on random graphs is the central role played by Gibbs measures on trees. We determine the local weak limit of the hardcore model on random regular graphs asymptotically until just below its condensation threshold, showing that it converges in probability locally in a strong sense to the free boundary condition Gibbs measure on the tree. As a consequence we show that the reconstruction threshold on the random graph, indicative of the onset of point to set spatial correlations, is equal to the reconstruction threshold on the $d$-regular tree for which we determine precise asymptotics. We expect that our methods will generalize to a wide range of spin systems for which the second moment method holds.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.