Scaling behavior of topologically constrained polymer rings in a melt

Authors: Benjamin Trefz, Peter Virnau

arXiv: 1412.4516v1 - DOI (cond-mat.soft)
5 pages, 5 figures

Abstract: Large scale molecular dynamics simulations on graphic processing units (GPUs) are employed to study the scaling behavior of ring polymers with various topological constraints in melts. Typical sizes of rings containing $3_1$, $5_1$ knots and catenanes made up of two unknotted rings scale like $N^{1/3}$ in the limit of large ring sizes $N$. This is consistent with the crumpled globule model and similar findings for unknotted rings. For small ring lengths knots occupy a significant fraction of the ring. The scaling of typical ring sizes for small $N$ thus depends on the particular knot type and the exponent is generally larger than 0.4.

Submitted to arXiv on 15 Dec. 2014

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.