High-Dimensional Continuous Control Using Generalized Advantage Estimation

Authors: John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, Pieter Abbeel

Abstract: This paper is concerned with developing policy gradient methods that gracefully scale up to challenging problems with high-dimensional state and action spaces. Towards this end, we develop a scheme that uses value functions to substantially reduce the variance of policy gradient estimates, while introducing a tolerable amount of bias. This scheme, which we call generalized advantage estimation (GAE), involves using a discounted sum of temporal difference residuals as an estimate of the advantage function, and can be interpreted as a type of automated cost shaping. It is simple to implement and can be used with a variety of policy gradient methods and value function approximators. Along with this variance-reduction scheme, we use trust region algorithms to optimize the policy and value function, both represented as neural networks. We present experimental results on a number of highly challenging 3D loco- motion tasks, where our approach learns complex gaits for bipedal and quadrupedal simulated robots. We also learn controllers for the biped getting up off the ground. In contrast to prior work that uses hand-crafted low-dimensional policy representations, our neural network policies map directly from raw kinematics to joint torques.

Submitted to arXiv on 08 Jun. 2015

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.