Organizational Chart Inference

Authors: Jiawei Zhang, Philip S. Yu, Yuanhua Lv

10 pages, 9 figures, 1 table. The paper is accepted by KDD 2015

Abstract: Nowadays, to facilitate the communication and cooperation among employees, a new family of online social networks has been adopted in many companies, which are called the "enterprise social networks" (ESNs). ESNs can provide employees with various professional services to help them deal with daily work issues. Meanwhile, employees in companies are usually organized into different hierarchies according to the relative ranks of their positions. The company internal management structure can be outlined with the organizational chart visually, which is normally confidential to the public out of the privacy and security concerns. In this paper, we want to study the IOC (Inference of Organizational Chart) problem to identify company internal organizational chart based on the heterogeneous online ESN launched in it. IOC is very challenging to address as, to guarantee smooth operations, the internal organizational charts of companies need to meet certain structural requirements (about its depth and width). To solve the IOC problem, a novel unsupervised method Create (ChArT REcovEr) is proposed in this paper, which consists of 3 steps: (1) social stratification of ESN users into different social classes, (2) supervision link inference from managers to subordinates, and (3) consecutive social classes matching to prune the redundant supervision links. Extensive experiments conducted on real-world online ESN dataset demonstrate that Create can perform very well in addressing the IOC problem.

Submitted to arXiv on 24 Jul. 2015

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.