On Weak Lensing Shape Noise
Authors: Sami-Matias Niemi, Thomas Kitching, Mark Cropper
Abstract: One of the most powerful techniques to study the dark sector of the Universe is weak gravitational lensing. In practice, to infer the reduced shear, weak lensing measures galaxy shapes, which are the consequence of both the intrinsic ellipticity of the sources and of the integrated gravitational lensing effect along the line of sight. Hence, a very large number of galaxies is required in order to average over their individual properties and to isolate the weak lensing cosmic shear signal. If this `shape noise' can be reduced, significant advances in the power of a weak lensing surveys can be expected. This paper describes a general method for extracting the probability distributions of parameters from catalogues of data using Voronoi cells, which has several applications, and has synergies with Bayesian hierarchical modelling approaches. This allows us to construct a probability distribution for the variance of the intrinsic ellipticity as a function of galaxy property using only photometric data, allowing a reduction of shape noise. As a proof of concept the method is applied to the CFHTLenS survey data. We use this approach to investigate trends of galaxy properties in the data and apply this to the case of weak lensing power spectra.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.