Parity Separation: A Scientifically Proven Method for Permanent Weight Loss

Authors: Radu Curticapean

14 pages

Abstract: Given an edge-weighted graph G, let PerfMatch(G) denote the weighted sum over all perfect matchings M in G, weighting each matching M by the product of weights of edges in M. If G is unweighted, this plainly counts the perfect matchings of G. In this paper, we introduce parity separation, a new method for reducing PerfMatch to unweighted instances: For graphs G with edge-weights -1 and 1, we construct two unweighted graphs G1 and G2 such that PerfMatch(G) = PerfMatch(G1) - PerfMatch(G2). This yields a novel weight removal technique for counting perfect matchings, in addition to those known from classical #P-hardness proofs. We derive the following applications: 1. An alternative #P-completeness proof for counting unweighted perfect matchings. 2. C=P-completeness for deciding whether two given unweighted graphs have the same number of perfect matchings. To the best of our knowledge, this is the first C=P-completeness result for the "equality-testing version" of any natural counting problem that is not already #P-hard under parsimonious reductions. 3. An alternative tight lower bound for counting unweighted perfect matchings under the counting exponential-time hypothesis #ETH. Our technique is based upon matchgates and the Holant framework. To make our #P-hardness proof self-contained, we also apply matchgates for an alternative #P-hardness proof of PerfMatch on graphs with edge-weights -1 and 1.

Submitted to arXiv on 23 Nov. 2015

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.