Generating Realistic Synthetic Population Datasets

Authors: Hao Wu, Yue Ning, Prithwish Chakraborty, Jilles Vreeken, Nikolaj Tatti, Naren Ramakrishnan

The conference version of the paper is submitted for publication

Abstract: Modern studies of societal phenomena rely on the availability of large datasets capturing attributes and activities of synthetic, city-level, populations. For instance, in epidemiology, synthetic population datasets are necessary to study disease propagation and intervention measures before implementation. In social science, synthetic population datasets are needed to understand how policy decisions might affect preferences and behaviors of individuals. In public health, synthetic population datasets are necessary to capture diagnostic and procedural characteristics of patient records without violating confidentialities of individuals. To generate such datasets over a large set of categorical variables, we propose the use of the maximum entropy principle to formalize a generative model such that in a statistically well-founded way we can optimally utilize given prior information about the data, and are unbiased otherwise. An efficient inference algorithm is designed to estimate the maximum entropy model, and we demonstrate how our approach is adept at estimating underlying data distributions. We evaluate this approach against both simulated data and on US census datasets, and demonstrate its feasibility using an epidemic simulation application.

Submitted to arXiv on 22 Feb. 2016

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.