Functional neuroanatomy of meditation: A review and meta-analysis of 78 functional neuroimaging investigations

Authors: Kieran C. R. Fox, Matthew L. Dixon, Savannah Nijeboer, Manesh Girn, James L. Floman, Michael Lifshitz, Melissa Ellamil, Peter Sedlmeier, Kalina Christoff

arXiv: 1603.06342v1 - DOI (q-bio.NC)

Abstract: Meditation is a family of mental practices that encompasses a wide array of techniques employing distinctive mental strategies. We systematically reviewed 78 functional neuroimaging (fMRI and PET) studies of meditation, and used activation likelihood estimation to meta-analyze 257 peak foci from 31 experiments involving 527 participants. We found reliably dissociable patterns of brain activation and deactivation for four common styles of meditation (focused attention, mantra recitation, open monitoring, and compassion/loving-kindness), and suggestive differences for three others (visualization, sense-withdrawal, and non-dual awareness practices). Overall, dissociable activation patterns are congruent with the psychological and behavioral aims of each practice. Some brain areas are recruited consistently across multiple techniques - including insula, pre/supplementary motor cortices, dorsal anterior cingulate cortex, and frontopolar cortex - but convergence is the exception rather than the rule. A preliminary effect-size meta-analysis found medium effects for both activations (d = .59) and deactivations (d = -.74), suggesting potential practical significance. Our meta-analysis supports the neurophysiological dissociability of meditation practices, but also raises many methodological concerns and suggests avenues for future research.

Submitted to arXiv on 21 Mar. 2016

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.