Entanglement Conservation, ER=EPR, and a New Classical Area Theorem for Wormholes
Authors: Grant N. Remmen, Ning Bao, Jason Pollack
Abstract: We consider the question of entanglement conservation in the context of the ER=EPR correspondence equating quantum entanglement with wormholes. In quantum mechanics, the entanglement between a system and its complement is conserved under unitary operations that act independently on each; ER=EPR suggests that an analogous statement should hold for wormholes. We accordingly prove a new area theorem in general relativity: for a collection of dynamical wormholes and black holes in a spacetime satisfying the null curvature condition, the maximin area for a subset of the horizons (giving the largest area attained by the minimal cross section of the multi-wormhole throat separating the subset from its complement) is invariant under classical time evolution along the outermost apparent horizons. The evolution can be completely general, including horizon mergers and the addition of classical matter satisfying the null energy condition. This theorem is the gravitational dual of entanglement conservation and thus constitutes an explicit characterization of the ER=EPR duality in the classical limit.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.