Nonlinear echoes and Landau damping with insufficient regularity
Authors: Jacob Bedrossian
Abstract: We prove that the theorem of Mouhot and Villani on Landau damping near equilibrium for the Vlasov-Poisson equations on $\mathbb{T}_x \times \mathbb{R}_v$ cannot, in general, be extended to high Sobolev spaces in the case of gravitational interactions. This is done by showing in every Sobolev space, there exists background distributions such that one can construct arbitrarily small perturbations that exhibit arbitrarily many isolated nonlinear oscillations in the density. These oscillations are known as plasma echoes in the physics community. For the case of electrostatic interactions, we demonstrate a sequence of small background distributions and asymptotically smaller perturbations in $H^s$ which display similar nonlinear echoes. This shows that in the electrostatic case, any extension of Mouhot and Villani's theorem to Sobolev spaces would have to depend crucially on some additional non-resonance effect coming from the background -- unlike the case of Gevrey-$\nu$ with $\nu < 3$ regularity, for which results are uniform in the size of small backgrounds. In particular, the uniform dependence on small background distributions obtained in Mouhot and Villani's theorem in Gevrey class is false in Sobolev spaces.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.