Food-bridging: a new network construction to unveil the principles of cooking

Authors: Tiago Simas, Michal Ficek, Albert Diaz-Guilera, Pere Obrador, Pablo R. Rodriguez

arXiv: 1704.03330v2 - DOI (physics.soc-ph)

Abstract: In this manuscript we propose, analyse, and discuss a possible new principle behind traditional cuisine: the Food-bridging hypothesis and its comparison with the food-pairing hypothesis using the same dataset and graphical models employed in the food-pairing study by Ahn et al. [Scientific Reports, 1:196 (2011)]. The Food-bridging hypothesis assumes that if two ingredients do not share a strong molecular or empirical affinity, they may become affine through a chain of pairwise affinities. That is, in a graphical model as employed by Ahn et al., a chain represents a path that joints the two ingredients, the shortest path represents the strongest pairwise chain of affinities between the two ingredients. Food-pairing and Food-bridging are different hypotheses that may describe possible mechanisms behind the recipes of traditional cuisines. Food-pairing intensifies flavour by mixing ingredients in a recipe with similar chemical compounds, and food-bridging smoothes contrast between ingredients. Both food-pairing and food-bridging are observed in traditional cuisines, as shown in this work. We observed four classes of cuisines according to food-pairing and food-bridging: (1) East Asian cuisines, at one extreme, tend to avoid food-pairing as well as food-bridging; and (4) Latin American cuisines, at the other extreme, follow both principles. For the two middle classes: (2) Southeastern Asian cuisines, avoid food-pairing and follow food-bridging; and (3) Western cuisines, follow food-pairing and avoid food-bridging.

Submitted to arXiv on 07 Apr. 2017

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.