Robust Optimization for Non-Convex Objectives
Authors: Robert Chen, Brendan Lucier, Yaron Singer, Vasilis Syrgkanis
Abstract: We consider robust optimization problems, where the goal is to optimize in the worst case over a class of objective functions. We develop a reduction from robust improper optimization to Bayesian optimization: given an oracle that returns $\alpha$-approximate solutions for distributions over objectives, we compute a distribution over solutions that is $\alpha$-approximate in the worst case. We show that de-randomizing this solution is NP-hard in general, but can be done for a broad class of statistical learning tasks. We apply our results to robust neural network training and submodular optimization. We evaluate our approach experimentally on corrupted character classification, and robust influence maximization in networks.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.