Optimal placement of a small order in a diffusive limit order book

Authors: José E. Figueroa-López, Hyoeun Lee, Raghu Pasupathy

arXiv: 1708.04337v1 - DOI (q-fin.TR)

Abstract: We study the optimal placement problem of a stock trader who wishes to clear his/her inventory by a predetermined time horizon t, by using a limit order or a market order. For a diffusive market, we characterize the optimal limit order placement policy and analyze its behavior under different market conditions. In particular, we show that, in the presence of a negative drift, there exists a critical time t0>0 such that, for any time horizon t>t0, there exists an optimal placement, which, contrary to earlier work, is different from one that is placed "infinitesimally" close to the best ask, such as the best bid and second best bid. We also propose a simple method to approximate the critical time t0 and the optimal order placement.

Submitted to arXiv on 14 Aug. 2017

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.