Pose2Seg: Detection Free Human Instance Segmentation

Authors: Song-Hai Zhang, Ruilong Li, Xin Dong, Paul L. Rosin, Zixi Cai, Han Xi, Dingcheng Yang, Hao-Zhi Huang, Shi-Min Hu

CVPR 2019
8 pages

Abstract: The standard approach to image instance segmentation is to perform the object detection first, and then segment the object from the detection bounding-box. More recently, deep learning methods like Mask R-CNN perform them jointly. However, little research takes into account the uniqueness of the "human" category, which can be well defined by the pose skeleton. Moreover, the human pose skeleton can be used to better distinguish instances with heavy occlusion than using bounding-boxes. In this paper, we present a brand new pose-based instance segmentation framework for humans which separates instances based on human pose, rather than proposal region detection. We demonstrate that our pose-based framework can achieve better accuracy than the state-of-art detection-based approach on the human instance segmentation problem, and can moreover better handle occlusion. Furthermore, there are few public datasets containing many heavily occluded humans along with comprehensive annotations, which makes this a challenging problem seldom noticed by researchers. Therefore, in this paper we introduce a new benchmark "Occluded Human (OCHuman)", which focuses on occluded humans with comprehensive annotations including bounding-box, human pose and instance masks. This dataset contains 8110 detailed annotated human instances within 4731 images. With an average 0.67 MaxIoU for each person, OCHuman is the most complex and challenging dataset related to human instance segmentation. Through this dataset, we want to emphasize occlusion as a challenging problem for researchers to study.

Submitted to arXiv on 28 Mar. 2018

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.