Opening the black box of deep learning
Authors: Dian Lei, Xiaoxiao Chen, Jianfei Zhao
Abstract: The great success of deep learning shows that its technology contains profound truth, and understanding its internal mechanism not only has important implications for the development of its technology and effective application in various fields, but also provides meaningful insights into the understanding of human brain mechanism. At present, most of the theoretical research on deep learning is based on mathematics. This dissertation proposes that the neural network of deep learning is a physical system, examines deep learning from three different perspectives: microscopic, macroscopic, and physical world views, answers multiple theoretical puzzles in deep learning by using physics principles. For example, from the perspective of quantum mechanics and statistical physics, this dissertation presents the calculation methods for convolution calculation, pooling, normalization, and Restricted Boltzmann Machine, as well as the selection of cost functions, explains why deep learning must be deep, what characteristics are learned in deep learning, why Convolutional Neural Networks do not have to be trained layer by layer, and the limitations of deep learning, etc., and proposes the theoretical direction and basis for the further development of deep learning now and in the future. The brilliance of physics flashes in deep learning, we try to establish the deep learning technology based on the scientific theory of physics.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.