Asynchronous decentralized accelerated stochastic gradient descent
Authors: Guanghui Lan, Yi Zhou
Abstract: In this work, we introduce an asynchronous decentralized accelerated stochastic gradient descent type of method for decentralized stochastic optimization, considering communication and synchronization are the major bottlenecks. We establish $\mathcal{O}(1/\epsilon)$ (resp., $\mathcal{O}(1/\sqrt{\epsilon})$) communication complexity and $\mathcal{O}(1/\epsilon^2)$ (resp., $\mathcal{O}(1/\epsilon)$) sampling complexity for solving general convex (resp., strongly convex) problems.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.