Image Super-Resolution Using VDSR-ResNeXt and SRCGAN
Authors: Saifuddin Hitawala, Yao Li, Xian Wang, Dongyang Yang
Abstract: Over the past decade, many Super Resolution techniques have been developed using deep learning. Among those, generative adversarial networks (GAN) and very deep convolutional networks (VDSR) have shown promising results in terms of HR image quality and computational speed. In this paper, we propose two approaches based on these two algorithms: VDSR-ResNeXt, which is a deep multi-branch convolutional network inspired by VDSR and ResNeXt; and SRCGAN, which is a conditional GAN that explicitly passes class labels as input to the GAN. The two methods were implemented on common SR benchmark datasets for both quantitative and qualitative assessment.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.