Synscapes: A Photorealistic Synthetic Dataset for Street Scene Parsing

Authors: Magnus Wrenninge, Jonas Unger

For more information and download see: https://7dlabs.com
License: CC BY 4.0

Abstract: We introduce Synscapes -- a synthetic dataset for street scene parsing created using photorealistic rendering techniques, and show state-of-the-art results for training and validation as well as new types of analysis. We study the behavior of networks trained on real data when performing inference on synthetic data: a key factor in determining the equivalence of simulation environments. We also compare the behavior of networks trained on synthetic data and evaluated on real-world data. Additionally, by analyzing pre-trained, existing segmentation and detection models, we illustrate how uncorrelated images along with a detailed set of annotations open up new avenues for analysis of computer vision systems, providing fine-grain information about how a model's performance changes according to factors such as distance, occlusion and relative object orientation.

Submitted to arXiv on 19 Oct. 2018

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.