Optimizing Market Making using Multi-Agent Reinforcement Learning
Authors: Yagna Patel
Abstract: In this paper, reinforcement learning is applied to the problem of optimizing market making. A multi-agent reinforcement learning framework is used to optimally place limit orders that lead to successful trades. The framework consists of two agents. The macro-agent optimizes on making the decision to buy, sell, or hold an asset. The micro-agent optimizes on placing limit orders within the limit order book. For the context of this paper, the proposed framework is applied and studied on the Bitcoin cryptocurrency market. The goal of this paper is to show that reinforcement learning is a viable strategy that can be applied to complex problems (with complex environments) such as market making.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.