SMPLR: Deep SMPL reverse for 3D human pose and shape recovery

Authors: Meysam Madadi, Hugo Bertiche, Sergio Escalera

License: CC BY-NC-SA 4.0

Abstract: Current state-of-the-art in 3D human pose and shape recovery relies on deep neural networks and statistical morphable body models, such as the Skinned Multi-Person Linear model (SMPL). However, regardless of the advantages of having both body pose and shape, SMPL-based solutions have shown difficulties to predict 3D bodies accurately. This is mainly due to the unconstrained nature of SMPL, which may generate unrealistic body meshes. Because of this, regression of SMPL parameters is a difficult task, often addressed with complex regularization terms. In this paper we propose to embed SMPL within a deep model to accurately estimate 3D pose and shape from a still RGB image. We use CNN-based 3D joint predictions as an intermediate representation to regress SMPL pose and shape parameters. Later, 3D joints are reconstructed again in the SMPL output. This module can be seen as an autoencoder where the encoder is a deep neural network and the decoder is SMPL model. We refer to this as SMPL reverse (SMPLR). By implementing SMPLR as an encoder-decoder we avoid the need of complex constraints on pose and shape. Furthermore, given that in-the-wild datasets usually lack accurate 3D annotations, it is desirable to lift 2D joints to 3D without pairing 3D annotations with RGB images. Therefore, we also propose a denoising autoencoder (DAE) module between CNN and SMPLR, able to lift 2D joints to 3D and partially recover from structured error. We evaluate our method on SURREAL and Human3.6M datasets, showing improvement over SMPL-based state-of-the-art alternatives by about 4 and 25 millimeters, respectively.

Submitted to arXiv on 27 Dec. 2018

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.