A deep Convolutional Neural Network for topology optimization with strong generalization ability
Authors: Yiquan Zhang, Bo Peng, Xiaoyi Zhou, Cheng Xiang, Dalei Wang
Abstract: This paper proposes a deep Convolutional Neural Network(CNN) with strong generalization ability for structural topology optimization. The architecture of the neural network is made up of encoding and decoding parts, which provide down- and up-sampling operations. In addition, a popular technique, namely U-Net, was adopted to improve the performance of the proposed neural network. The input of the neural network is a well-designed tensor with each channel includes different information for the problem, and the output is the layout of the optimal structure. To train the neural network, a large dataset is generated by a conventional topology optimization approach, i.e. SIMP. The performance of the proposed method was evaluated by comparing its efficiency and accuracy with SIMP on a series of typical optimization problems. Results show that a significant reduction in computation cost was achieved with little sacrifice on the optimality of design solutions. Furthermore, the proposed method can intelligently solve problems under boundary conditions not being included in the training dataset.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.