Resource Abstraction for Reinforcement Learning in Multiagent Congestion Problems
Authors: Kleanthis Malialis, Sam Devlin, Daniel Kudenko
Abstract: Real-world congestion problems (e.g. traffic congestion) are typically very complex and large-scale. Multiagent reinforcement learning (MARL) is a promising candidate for dealing with this emerging complexity by providing an autonomous and distributed solution to these problems. However, there are three limiting factors that affect the deployability of MARL approaches to congestion problems. These are learning time, scalability and decentralised coordination i.e. no communication between the learning agents. In this paper we introduce Resource Abstraction, an approach that addresses these challenges by allocating the available resources into abstract groups. This abstraction creates new reward functions that provide a more informative signal to the learning agents and aid the coordination amongst them. Experimental work is conducted on two benchmark domains from the literature, an abstract congestion problem and a realistic traffic congestion problem. The current state-of-the-art for solving multiagent congestion problems is a form of reward shaping called difference rewards. We show that the system using Resource Abstraction significantly improves the learning speed and scalability, and achieves the highest possible or near-highest joint performance/social welfare for both congestion problems in large-scale scenarios involving up to 1000 reinforcement learning agents.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.