PRNU-Based Source Device Attribution for YouTube Videos

Authors: Emmanuel Kiegaing Kouokam, Ahmet Emir Dirik

Digital Investigation, March 2019
Revised (and accepted) version of the original submission. Minor changes have been brought to the original manuscript
License: CC BY-NC-SA 4.0

Abstract: Photo Response Non-Uniformity (PRNU) is a camera imaging sensor imperfection which has earned a great interest for source device attribution of digital videos. A majority of recent researches about PRNU-based source device attribution for digital videos do not take into consideration the effects of video compression on the PRNU noise in video frames, but rather consider video frames as isolated images of equal importance. As a result, these methods perform poorly on re-compressed or low bit-rate videos. This paper proposes a novel method for PRNU fingerprint estimation from video frames taking into account the effects of video compression on the PRNU noise in these frames. With this method, we aim to determine whether two videos from unknown sources originate from the same device or not. Experimental results on a large set of videos show that the method we propose is more effective than existing frame-based methods that use either only I frames or all (I-B-P) frames, especially on YouTube videos.

Submitted to arXiv on 21 Mar. 2019

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.