Hypersparse Neural Network Analysis of Large-Scale Internet Traffic
Authors: Jeremy Kepner, Kenjiro Cho, KC Claffy, Vijay Gadepally, Peter Michaleas, Lauren Milechin
Abstract: The Internet is transforming our society, necessitating a quantitative understanding of Internet traffic. Our team collects and curates the largest publicly available Internet traffic data containing 50 billion packets. Utilizing a novel hypersparse neural network analysis of "video" streams of this traffic using 10,000 processors in the MIT SuperCloud reveals a new phenomena: the importance of otherwise unseen leaf nodes and isolated links in Internet traffic. Our neural network approach further shows that a two-parameter modified Zipf-Mandelbrot distribution accurately describes a wide variety of source/destination statistics on moving sample windows ranging from 100,000 to 100,000,000 packets over collections that span years and continents. The inferred model parameters distinguish different network streams and the model leaf parameter strongly correlates with the fraction of the traffic in different underlying network topologies. The hypersparse neural network pipeline is highly adaptable and different network statistics and training models can be incorporated with simple changes to the image filter functions.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.