Learning Objectness from Sonar Images for Class-Independent Object Detection
Authors: Matias Valdenegro-Toro
Abstract: Detecting novel objects without class information is not trivial, as it is difficult to generalize from a small training set. This is an interesting problem for underwater robotics, as modeling marine objects is inherently more difficult in sonar images, and training data might not be available apriori. Detection proposals algorithms can be used for this purpose but usually requires a large amount of output bounding boxes. In this paper we propose the use of a fully convolutional neural network that regresses an objectness value directly from a Forward-Looking sonar image. By ranking objectness, we can produce high recall (96 %) with only 100 proposals per image. In comparison, EdgeBoxes requires 5000 proposals to achieve a slightly better recall of 97 %, while Selective Search requires 2000 proposals to achieve 95 % recall. We also show that our method outperforms a template matching baseline by a considerable margin, and is able to generalize to completely new objects. We expect that this kind of technique can be used in the field to find lost objects under the sea.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.