Cap2Det: Learning to Amplify Weak Caption Supervision for Object Detection
Authors: Keren Ye, Mingda Zhang, Adriana Kovashka, Wei Li, Danfeng Qin, Jesse Berent
Abstract: Learning to localize and name object instances is a fundamental problem in vision, but state-of-the-art approaches rely on expensive bounding box supervision. While weakly supervised detection (WSOD) methods relax the need for boxes to that of image-level annotations, even cheaper supervision is naturally available in the form of unstructured textual descriptions that users may freely provide when uploading image content. However, straightforward approaches to using such data for WSOD wastefully discard captions that do not exactly match object names. Instead, we show how to squeeze the most information out of these captions by training a text-only classifier that generalizes beyond dataset boundaries. Our discovery provides an opportunity for learning detection models from noisy but more abundant and freely-available caption data. We also validate our model on three classic object detection benchmarks and achieve state-of-the-art WSOD performance.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.