Stock Price Forecasting and Hypothesis Testing Using Neural Networks

Authors: Kerda Varaku

arXiv: 1908.11212v1 - DOI (q-fin.ST)

Abstract: In this work we use Recurrent Neural Networks and Multilayer Perceptrons to predict NYSE, NASDAQ and AMEX stock prices from historical data. We experiment with different architectures and compare data normalization techniques. Then, we leverage those findings to question the efficient-market hypothesis through a formal statistical test.

Submitted to arXiv on 28 Aug. 2019

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.