Oblivious Sketching of High-Degree Polynomial Kernels

Authors: Michael Kapralov, Rasmus Pagh, Ameya Velingker, David Woodruff, Amir Zandieh

Abstract: Kernel methods are fundamental tools in machine learning that allow detection of non-linear dependencies between data without explicitly constructing feature vectors in high dimensional spaces. A major disadvantage of kernel methods is their poor scalability: primitives such as kernel PCA or kernel ridge regression generally take prohibitively large quadratic space and (at least) quadratic time, as kernel matrices are usually dense. Some methods for speeding up kernel linear algebra are known, but they all invariably take time exponential in either the dimension of the input point set (e.g., fast multipole methods suffer from the curse of dimensionality) or in the degree of the kernel function. Oblivious sketching has emerged as a powerful approach to speeding up numerical linear algebra over the past decade, but our understanding of oblivious sketching solutions for kernel matrices has remained quite limited, suffering from the aforementioned exponential dependence on input parameters. Our main contribution is a general method for applying sketching solutions developed in numerical linear algebra over the past decade to a tensoring of data points without forming the tensoring explicitly. This leads to the first oblivious sketch for the polynomial kernel with a target dimension that is only polynomially dependent on the degree of the kernel function, as well as the first oblivious sketch for the Gaussian kernel on bounded datasets that does not suffer from an exponential dependence on the dimensionality of input data points.

Submitted to arXiv on 03 Sep. 2019

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.