Optimal Wireless Resource Allocation with Random Edge Graph Neural Networks

Authors: Mark Eisen, Alejandro Ribeiro

Abstract: We consider the problem of optimally allocating resources across a set of transmitters and receivers in a wireless network. The resulting optimization problem takes the form of constrained statistical learning, in which solutions can be found in a model-free manner by parameterizing the resource allocation policy. Convolutional neural networks architectures are an attractive option for parameterization, as their dimensionality is small and does not scale with network size. We introduce the random edge graph neural network (REGNN), which performs convolutions over random graphs formed by the fading interference patterns in the wireless network. The REGNN-based allocation policies are shown to retain an important permutation equivariance property that makes them amenable to transference to different networks. We further present an unsupervised model-free primal-dual learning algorithm to train the weights of the REGNN. Through numerical simulations, we demonstrate the strong performance REGNNs obtain relative to heuristic benchmarks and their transference capabilities.

Submitted to arXiv on 04 Sep. 2019

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.