Understanding Bias in Machine Learning
Authors: Jindong Gu, Daniela Oelke
Abstract: Bias is known to be an impediment to fair decisions in many domains such as human resources, the public sector, health care etc. Recently, hope has been expressed that the use of machine learning methods for taking such decisions would diminish or even resolve the problem. At the same time, machine learning experts warn that machine learning models can be biased as well. In this article, our goal is to explain the issue of bias in machine learning from a technical perspective and to illustrate the impact that biased data can have on a machine learning model. To reach such a goal, we develop interactive plots to visualizing the bias learned from synthetic data.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.