Spectrally resolved cosmic ray hydrodynamics -- I. Spectral scheme
Authors: Philipp Girichidis, Christoph Pfrommer, Michal Hanasz, Thorsten Naab
Abstract: Cosmic ray (CR) protons are an important component in many astrophysical systems. Processes like CR injection, cooling, adiabatic changes as well as active CR transport through the medium strongly modify the CR momentum distribution and have to be taken into account in hydrodynamical simulations. We present an efficient novel numerical scheme to accurately compute the evolution of the particle distribution function by solving the Fokker-Planck equation with a low number of spectral bins (10 - 20), which is required to include a full spectrum for every computational fluid element. The distribution function is represented by piecewise power laws and is not forced to be continuous, which enables an optimal representation of the spectrum. The Fokker-Planck equation is solved with a two-moment approach evolving the CR number and energy density. The low numerical diffusion of the scheme reduces the numerical errors by orders of magnitude in comparison to classical schemes with piecewise constant spectral representations. With this method not only the spectral evolution of CRs can be computed accurately in magnetohydrodynamic simulations but also their dynamical impact as well as CR ionisation. This allows for more accurate models for astrophysical plasmas, like the interstellar medium, and direct comparisons with observations.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.