Condensable models of set theory
Authors: Ali Enayat
Abstract: We study models M of set theory that are "condensable", in the sense that there is an "ordinal" v of M such that the rank initial segment of M determined by v is both isomorphic to M, and also an elementary submodel of M for infinitary formulae in the well-founded part of M. We prove, assuming a modest set theoretic hypothesis, that there are condensable models M of ZFC such that every definable element of M is in the well-founded part of M. We also provide various characterizations of countable condensable models of ZF.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.