Natural Question Generation with Reinforcement Learning Based Graph-to-Sequence Model
Authors: Yu Chen, Lingfei Wu, Mohammed J. Zaki
Abstract: Natural question generation (QG) aims to generate questions from a passage and an answer. In this paper, we propose a novel reinforcement learning (RL) based graph-to-sequence (Graph2Seq) model for QG. Our model consists of a Graph2Seq generator where a novel Bidirectional Gated Graph Neural Network is proposed to embed the passage, and a hybrid evaluator with a mixed objective combining both cross-entropy and RL losses to ensure the generation of syntactically and semantically valid text. The proposed model outperforms previous state-of-the-art methods by a large margin on the SQuAD dataset.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.