End-to-end Microphone Permutation and Number Invariant Multi-channel Speech Separation
Authors: Yi Luo, Zhuo Chen, Nima Mesgarani, Takuya Yoshioka
Abstract: An important problem in ad-hoc microphone speech separation is how to guarantee the robustness of a system with respect to the locations and numbers of microphones. The former requires the system to be invariant to different indexing of the microphones with the same locations, while the latter requires the system to be able to process inputs with varying dimensions. Conventional optimization-based beamforming techniques satisfy these requirements by definition, while for deep learning-based end-to-end systems those constraints are not fully addressed. In this paper, we propose transform-average-concatenate (TAC), a simple design paradigm for channel permutation and number invariant multi-channel speech separation. Based on the filter-and-sum network (FaSNet), a recently proposed end-to-end time-domain beamforming system, we show how TAC significantly improves the separation performance across various numbers of microphones in noisy reverberant separation tasks with ad-hoc arrays. Moreover, we show that TAC also significantly improves the separation performance with fixed geometry array configuration, further proving the effectiveness of the proposed paradigm in the general problem of multi-microphone speech separation.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.