Spherical Text Embedding
Authors: Yu Meng, Jiaxin Huang, Guangyuan Wang, Chao Zhang, Honglei Zhuang, Lance Kaplan, Jiawei Han
Abstract: Unsupervised text embedding has shown great power in a wide range of NLP tasks. While text embeddings are typically learned in the Euclidean space, directional similarity is often more effective in tasks such as word similarity and document clustering, which creates a gap between the training stage and usage stage of text embedding. To close this gap, we propose a spherical generative model based on which unsupervised word and paragraph embeddings are jointly learned. To learn text embeddings in the spherical space, we develop an efficient optimization algorithm with convergence guarantee based on Riemannian optimization. Our model enjoys high efficiency and achieves state-of-the-art performances on various text embedding tasks including word similarity and document clustering.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.