The high-energy environment and atmospheric escape of the mini-Neptune K2-18 b
Authors: Leonardo A. dos Santos, David Ehrenreich, Vincent Bourrier, Nicola Astudillo-Defru, Xavier Bonfils, François Forget, Christophe Lovis, Francesco Pepe, Stéphane Udry
Abstract: K2-18 b is a transiting mini-Neptune that orbits a nearby (38 pc) cool M3 dwarf and is located inside its region of temperate irradiation. We report on the search for hydrogen escape from the atmosphere K2-18 b using Lyman-$\alpha$ transit spectroscopy with the Space Telescope Imaging Spectrograph (STIS) instrument installed on the Hubble Space Telescope (HST). We analyzed the time-series of the fluxes of the stellar Lyman-$\alpha$ emission of K2-18 in both its blue- and redshifted wings. We found that the average blueshifted emission of K2-18 decreases by $67\% \pm 18\%$ during the transit of the planet compared to the pre-transit emission, tentatively indicating the presence of H atoms escaping vigorously and being blown away by radiation pressure. This interpretation is not definitive because it relies on one partial transit. Based on the reconstructed Lyman-$\alpha$ emission of K2-18, we estimate an EUV irradiation between $10^1-10^2$ erg s$^{-1}$ cm$^{-2}$ and a total escape rate in the order of $10^8$ g s$^{-1}$. The inferred escape rate suggests that the planet will lose only a small fraction (< 1%) of its mass and retain its volatile-rich atmosphere during its lifetime. More observations are needed to rule out stellar variability effects, confirm the in-transit absorption and better assess the atmospheric escape and high-energy environment of K2-18 b.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.