Identifying At-Risk K-12 Students in Multimodal Online Environments: A Machine Learning Approach
Authors: Hang Li, Wenbiao Ding, Zitao Liu
Abstract: With the rapid emergence of K-12 online learning platforms, a new era of education has been opened up. It is crucial to have a dropout warning framework to preemptively identify K-12 students who are at risk of dropping out of the online courses. Prior researchers have focused on predicting dropout in Massive Open Online Courses (MOOCs), which often deliver higher education, i.e., graduate level courses at top institutions. However, few studies have focused on developing a machine learning approach for students in K-12 online courses. In this paper, we develop a machine learning framework to conduct accurate at-risk student identification specialized in K-12 multimodal online environments. Our approach considers both online and offline factors around K-12 students and aims at solving the challenges of (1) multiple modalities, i.e., K-12 online environments involve interactions from different modalities such as video, voice, etc; (2) length variability, i.e., students with different lengths of learning history; (3) time sensitivity, i.e., the dropout likelihood is changing with time; and (4) data imbalance, i.e., only less than 20\% of K-12 students will choose to drop out the class. We conduct a wide range of offline and online experiments to demonstrate the effectiveness of our approach. In our offline experiments, we show that our method improves the dropout prediction performance when compared to state-of-the-art baselines on a real-world educational dataset. In our online experiments, we test our approach on a third-party K-12 online tutoring platform for two months and the results show that more than 70\% of dropout students are detected by the system.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.