LogicNets: Co-Designed Neural Networks and Circuits for Extreme-Throughput Applications
Authors: Yaman Umuroglu, Yash Akhauri, Nicholas J. Fraser, Michaela Blott
Abstract: Deployment of deep neural networks for applications that require very high throughput or extremely low latency is a severe computational challenge, further exacerbated by inefficiencies in mapping the computation to hardware. We present a novel method for designing neural network topologies that directly map to a highly efficient FPGA implementation. By exploiting the equivalence of artificial neurons with quantized inputs/outputs and truth tables, we can train quantized neural networks that can be directly converted to a netlist of truth tables, and subsequently deployed as a highly pipelinable, massively parallel FPGA circuit. However, the neural network topology requires careful consideration since the hardware cost of truth tables grows exponentially with neuron fan-in. To obtain smaller networks where the whole netlist can be placed-and-routed onto a single FPGA, we derive a fan-in driven hardware cost model to guide topology design, and combine high sparsity with low-bit activation quantization to limit the neuron fan-in. We evaluate our approach on two tasks with very high intrinsic throughput requirements in high-energy physics and network intrusion detection. We show that the combination of sparsity and low-bit activation quantization results in high-speed circuits with small logic depth and low LUT cost, demonstrating competitive accuracy with less than 15 ns of inference latency and throughput in the hundreds of millions of inferences per second.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.