A Survey on Sampling and Profiling over Big Data (Technical Report)
Authors: Zhicheng Liu, Aoqian Zhang
Abstract: Due to the development of internet technology and computer science, data is exploding at an exponential rate. Big data brings us new opportunities and challenges. On the one hand, we can analyze and mine big data to discover hidden information and get more potential value. On the other hand, the 5V characteristic of big data, especially Volume which means large amount of data, brings challenges to storage and processing. For some traditional data mining algorithms, machine learning algorithms and data profiling tasks, it is very difficult to handle such a large amount of data. The large amount of data is highly demanding hardware resources and time consuming. Sampling methods can effectively reduce the amount of data and help speed up data processing. Hence, sampling technology has been widely studied and used in big data context, e.g., methods for determining sample size, combining sampling with big data processing frameworks. Data profiling is the activity that finds metadata of data set and has many use cases, e.g., performing data profiling tasks on relational data, graph data, and time series data for anomaly detection and data repair. However, data profiling is computationally expensive, especially for large data sets. Therefore, this paper focuses on researching sampling and profiling in big data context and investigates the application of sampling in different categories of data profiling tasks. From the experimental results of these studies, the results got from the sampled data are close to or even exceed the results of the full amount of data. Therefore, sampling technology plays an important role in the era of big data, and we also have reason to believe that sampling technology will become an indispensable step in big data processing in the future.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.