Finding Experts in Transformer Models
Authors: Xavier Suau, Luca Zappella, Nicholas Apostoloff
Abstract: In this work we study the presence of expert units in pre-trained Transformer Models (TM), and how they impact a model's performance. We define expert units to be neurons that are able to classify a concept with a given average precision, where a concept is represented by a binary set of sentences containing the concept (or not). Leveraging the OneSec dataset (Scarlini et al., 2019), we compile a dataset of 1641 concepts that allows diverse expert units in TM to be discovered. We show that expert units are important in several ways: (1) The presence of expert units is correlated ($r^2=0.833$) with the generalization power of TM, which allows ranking TM without requiring fine-tuning on suites of downstream tasks. We further propose an empirical method to decide how accurate such experts should be to evaluate generalization. (2) The overlap of top experts between concepts provides a sensible way to quantify concept co-learning, which can be used for explainability of unknown concepts. (3) We show how to self-condition off-the-shelf pre-trained language models to generate text with a given concept by forcing the top experts to be active, without requiring re-training the model or using additional parameters.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.