Causal Bayesian Optimization
Authors: Virginia Aglietti, Xiaoyu Lu, Andrei Paleyes, Javier Gonz\' alez
Abstract: This paper studies the problem of globally optimizing a variable of interest that is part of a causal model in which a sequence of interventions can be performed. This problem arises in biology, operational research, communications and, more generally, in all fields where the goal is to optimize an output metric of a system of interconnected nodes. Our approach combines ideas from causal inference, uncertainty quantification and sequential decision making. In particular, it generalizes Bayesian optimization, which treats the input variables of the objective function as independent, to scenarios where causal information is available. We show how knowing the causal graph significantly improves the ability to reason about optimal decision making strategies decreasing the optimization cost while avoiding suboptimal solutions. We propose a new algorithm called Causal Bayesian Optimization (CBO). CBO automatically balances two trade-offs: the classical exploration-exploitation and the new observation-intervention, which emerges when combining real interventional data with the estimated intervention effects computed via do-calculus. We demonstrate the practical benefits of this method in a synthetic setting and in two real-world applications.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.