Multi-split Optimized Bagging Ensemble Model Selection for Multi-class Educational Data Mining

Authors: MohammadNoor Injadat, Abdallah Moubayed, Ali Bou Nassif, Abdallah Shami

29 Pages, 13 Figures, 19 Tables, Accepted in Springer's Applied Intelligence

Abstract: Predicting students' academic performance has been a research area of interest in recent years with many institutions focusing on improving the students' performance and the education quality. The analysis and prediction of students' performance can be achieved using various data mining techniques. Moreover, such techniques allow instructors to determine possible factors that may affect the students' final marks. To that end, this work analyzes two different undergraduate datasets at two different universities. Furthermore, this work aims to predict the students' performance at two stages of course delivery (20% and 50% respectively). This analysis allows for properly choosing the appropriate machine learning algorithms to use as well as optimize the algorithms' parameters. Furthermore, this work adopts a systematic multi-split approach based on Gini index and p-value. This is done by optimizing a suitable bagging ensemble learner that is built from any combination of six potential base machine learning algorithms. It is shown through experimental results that the posited bagging ensemble models achieve high accuracy for the target group for both datasets.

Submitted to arXiv on 09 Jun. 2020

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.