Euclid preparation: X. The Euclid photometric-redshift challenge

Authors: N. Mauri, L. Patrizii, G. Sirri, L. Stanco, M. Tenti, Y. Wang, O. Ilbert, M. Meneghetti, Euclid Collaboration, G. Desprez, S. Paltani, J. Coupon, I. Almosallam, A. Alvarez-Ayllon, V. Amaro, M. Brescia, M. Brodwin, S. Cavuoti, J. De Vicente-Albendea, S. Fotopoulou, P. W. Hatfield, W. G. Hartley, M. J. Jarvis, G. Longo, R. Saha, J. S. Speagle, A. Tramacere, M. Castellano, F. Dubath, A. Galametz, M. Kuemmel, C. Laigle, E. Merlin, J. J. Mohr, S. Pilo, M. Salvato, M. M. Rau, S. Andreon, N. Auricchio, C. Baccigalupi, A. Balaguera-Antolínez, M. Baldi, S. Bardelli, R. Bender, A. Biviano, C. Bodendorf, D. Bonino, E. Bozzo, E. Branchini, J. Brinchmann, C. Burigana, R. Cabanac, S. Camera, V. Capobianco, A. Cappi, C. Carbone, J. Carretero, C. S. Carvalho, R. Casas, S. Casas, F. J. Castander, G. Castignani, A. Cimatti, R. Cledassou, C. Colodro-Conde, G. Congedo, C. J. Conselice, L. Conversi, Y. Copin, L. Corcione, H. M. Courtois, J. -G. Cuby, A. Da Silva, S. de la Torre, H. Degaudenzi, D. Di Ferdinando, M. Douspis, C. A. J. Duncan, X. Dupac, A. Ealet, G. Fabbian, M. Fabricius, S. Farrens, P. G. Ferreira, F. Finelli, P. Fosalba, N. Fourmanoit, M. Frailis, E. Franceschi, M. Fumana, S. Galeotta, B. Garilli, W. Gillard, B. Gillis, C. Giocoli, G. Gozaliasl, J. Graciá-Carpio, F. Grupp, L. Guzzo, M. Hailey, S. V. H. Haugan, W. Holmes, F. Hormuth, A. Humphrey, K. Jahnke, E. Keihanen, S. Kermiche, M. Kilbinger, C. C. Kirkpatrick, T. D. Kitching, R. Kohley, B. Kubik, M. Kunz, H. Kurki-Suonio, S. Ligori, P. B. Lilje, I. Lloro, D. Maino, E. Maiorano, O. Marggraf, K. Markovic, N. Martinet, F. Marulli, R. Massey, M. Maturi, S. Maurogordato, E. Medinaceli, S. Mei, R. Benton Metcalf, G. Meylan, M. Moresco, L. Moscardini, E. Munari, S. Niemi, C. Padilla, F. Pasian, V. Pettorino, S. Pires, G. Polenta, M. Poncet, L. Popa, D. Potter, L. Pozzetti, F. Raison, A. Renzi, J. Rhodes, G. Riccio, E. Rossetti, R. Saglia, D. Sapone, P. Schneider, V. Scottez, A. Secroun, S. Serrano, C. Sirignano, D. Stern, F. Sureau, P. Tallada Crespí, D. Tavagnacco, A. N. Taylor, I. Tereno, R. Toledo-Moreo, F. Torradeflot, L. Valenziano, J. Valiviita, T. Vassallo, M. Viel, N. Welikala, L. Whittaker, A. Zacchei, G. Zamorani, J. Zoubian, E. Zucca

arXiv: 2009.12112v1 - DOI (astro-ph.GA)
Submitted to A&A, 25 pages, 13 figures, 7 tables

Abstract: Forthcoming large photometric surveys for cosmology require precise and accurate photometric redshift (photo-z) measurements for the success of their main science objectives. However, to date, no method has been able to produce photo-$z$s at the required accuracy using only the broad-band photometry that those surveys will provide. An assessment of the strengths and weaknesses of current methods is a crucial step in the eventual development of an approach to meet this challenge. We report on the performance of 13 photometric redshift code single value redshift estimates and redshift probability distributions (PDZs) on a common set of data, focusing particularly on the 0.2--2.6 redshift range that the Euclid mission will probe. We design a challenge using emulated Euclid data drawn from three photometric surveys of the COSMOS field. The data are divided into two samples: one calibration sample for which photometry and redshifts are provided to the participants; and the validation sample, containing only the photometry, to ensure a blinded test of the methods. Participants were invited to provide a redshift single value estimate and a PDZ for each source in the validation sample, along with a rejection flag that indicates sources they consider unfit for use in cosmological analyses. The performance of each method is assessed through a set of informative metrics, using cross-matched spectroscopic and highly-accurate photometric redshifts as the ground truth. We show that the rejection criteria set by participants are efficient in removing strong outliers, sources for which the photo-z deviates by more than 0.15(1+z) from the spectroscopic-redshift (spec-z). We also show that, while all methods are able to provide reliable single value estimates, several machine-learning methods do not manage to produce useful PDZs. [abridged]

Submitted to arXiv on 25 Sep. 2020

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.