Saving superconducting quantum processors from qubit decay and correlated errors generated by gamma and cosmic rays
Authors: John M. Martinis
Abstract: Error-corrected quantum computers can only work if errors are small and uncorrelated. Here I show how cosmic rays or stray background radiation affects superconducting qubits by modeling the phonon to electron/quasiparticle down-conversion physics. For present designs, the model predicts about 57\% of the radiation energy breaks Cooper pairs into quasiparticles, which then vigorously suppress the qubit energy relaxation time ($T_1 \sim$ 160 ns) over a large area (cm) and for a long time (ms). Such large and correlated decay kills error correction. Using this quantitative model, I show how this energy can be channeled away from the qubit so that this error mechanism can be reduced by many orders of magnitude. I also comment on how this affects other solid-state qubits.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.