The VIP Gallery for Video Processing Education
Authors: Todd Goodall, Alan C. Bovik
Abstract: Digital video pervades daily life. Mobile video, digital TV, and digital cinema are now ubiquitous, and as such, the field of Digital Video Processing (DVP) has experienced tremendous growth. Digital video systems also permeate scientific and engineering disciplines including but not limited to astronomy, communications, surveillance, entertainment, video coding, computer vision, and vision research. As a consequence, educational tools for DVP must cater to a large and diverse base of students. Towards enhancing DVP education we have created a carefully constructed gallery of educational tools that is designed to complement a comprehensive corpus of online lectures by providing examples of DVP on real-world content, along with a user-friendly interface that organizes numerous key DVP topics ranging from analog video, to human visual processing, to modern video codecs, etc. This demonstration gallery is currently being used effectively in the graduate class ``Digital Video'' at the University of Texas at Austin. Students receive enhanced access to concepts through both learning theory from highly visual lectures and watching concrete examples from the gallery, which captures the beauty of the underlying principles of modern video processing. To better understand the educational value of these tools, we conducted a pair of questionaire-based surveys to assess student background, expectations, and outcomes. The survey results support the teaching efficacy of this new didactic video toolset.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.