On Explaining Your Explanations of BERT: An Empirical Study with Sequence Classification

Authors: Zhengxuan Wu, Desmond C. Ong

License: CC BY 4.0

Abstract: BERT, as one of the pretrianed language models, attracts the most attention in recent years for creating new benchmarks across GLUE tasks via fine-tuning. One pressing issue is to open up the blackbox and explain the decision makings of BERT. A number of attribution techniques have been proposed to explain BERT models, but are often limited to sequence to sequence tasks. In this paper, we adapt existing attribution methods on explaining decision makings of BERT in sequence classification tasks. We conduct extensive analyses of four existing attribution methods by applying them to four different datasets in sentiment analysis. We compare the reliability and robustness of each method via various ablation studies. Furthermore, we test whether attribution methods explain generalized semantics across semantically similar tasks. Our work provides solid guidance for using attribution methods to explain decision makings of BERT for downstream classification tasks.

Submitted to arXiv on 01 Jan. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.