Persuasive Natural Language Generation -- A Literature Review
Authors: Sebastian Duerr, Peter A. Gloor
Abstract: This literature review focuses on the use of Natural Language Generation (NLG) to automatically detect and generate persuasive texts. Extending previous research on automatic identification of persuasion in text, we concentrate on generative aspects through conceptualizing determinants of persuasion in five business-focused categories: benevolence, linguistic appropriacy, logical argumentation, trustworthiness, tools and datasets. These allow NLG to increase an existing message's persuasiveness. Previous research illustrates key aspects in each of the above mentioned five categories. A research agenda to further study persuasive NLG is developed. The review includes analysis of seventy-seven articles, outlining the existing body of knowledge and showing the steady progress in this research field.
Explore the paper tree
Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant
Look for similar papers (in beta version)
By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.