Secure Estimation and Attack Isolation for Connected and Automated Driving in the Presence of Malicious Vehicles

Authors: Tianci Yang, Chen Lv

Abstract: Connected and Automated Vehicles (CAVs) rely on the correctness of position and other vehicle kinematics information to fulfill various driving tasks such as vehicle following, lane change, and collision avoidance. However, a malicious vehicle may send false sensor information to the other vehicles intentionally or unintentionally, which may cause traffic inconvenience or loss of human lives. Here, we take the advantage of cloud-computing and increase the resilience of CAVs to malicious vehicles by assuming each vehicle shares its local sensor information with other vehicles to create information redundancy on the cloud side. We exploit this redundancy and propose a sensor fusion algorithm for the cloud, capable of providing a robust state estimation of all vehicles in the cloud under the condition that the number of malicious information is sufficiently small. Using the proposed estimator, we provide an algorithm for isolating malicious vehicles. We use numerical examples to illustrate the effectiveness of our methods.

Submitted to arXiv on 01 Mar. 2021

Explore the paper tree

Click on the tree nodes to be redirected to a given paper and access their summaries and virtual assistant

Also access our AI generated Summaries, or ask questions about this paper to our AI assistant.

Look for similar papers (in beta version)

By clicking on the button above, our algorithm will scan all papers in our database to find the closest based on the contents of the full papers and not just on metadata. Please note that it only works for papers that we have generated summaries for and you can rerun it from time to time to get a more accurate result while our database grows.